Wahl singularities in degenerations of del Pezzo surfaces

Juan Pablo Zúñiga, joint work with Giancarlo Urzúa

Pontificia Universidad Católica de Chile

Del Pezzo Wahl chains

A normal surface germ $(p \in X)$ is called a Wahl singularity if it is a quotient singularity and admits a \mathbb{Q} -Gorenstein smoothing with vanishing Milnor number. They are cyclic quotient singularities of the form: $\frac{1}{n^2}(1, na-1)$ with 0 < a < n and gcd(a, n) = 1.

These singularities appear predominantly in the study of 1-parameter \mathbb{Q} -Gorenstein smoothings of stable surfaces. By the work of Hacking and Prokhorov [2], all klt degenerations of \mathbb{P}^2 correspond to \mathbb{Q} -Gorenstein deformations of weighted projective planes $\mathbb{P}(a^2,b^2,c^2)$ where $a^2+b^2+c^2=3abc$. These surfaces contain only Wahl singularities. This classification can be recovered by means of Hirzebruch-Jung continued fractions.

For 0 < q < m with gcd(m,q) = 1, the fraction m/q is uniquely given by:

$$\frac{m}{q} = e_1 - \frac{1}{e_2 - \frac{1}{\cdots - \frac{1}{e_r}}} =: [e_1, \dots, e_r].$$

Definition 1.1 A chain $[f_1, \ldots, f_r]$ with $f_i \ge 2$ admits a zero continued fraction of weight λ if there are indices $i_1 < i_2 < \ldots < i_v$ for some $v \ge 1$ and integers $d_{i_k} \ge 1$ such that

$$[\ldots, f_{i_1} - d_{i_1}, \ldots, f_{i_2} - d_{i_2}, \ldots, f_{i_n} - d_{i_n}, \ldots] = 0,$$

and
$$\lambda + 1 = \sum_{k=1}^{v} d_{i_k}$$
.

Proposition 1.2 ([6] Prop 4.1) A Wahl chain $\frac{n^2}{na-1} = [e_1, \ldots, e_r]$ appears in a degeneration of \mathbb{P}^2 if and only if there exists a $i \in \{1, \ldots, r\}$ such that $[e_1, \ldots, e_{i-1}]$ and $[e_{i+1}, \ldots, e_r]$ admit zero continued fractions of weight 0. (One (i = 1, r) or both (r = 1) chains could be empty.) In particular n is forced to be a Markov number.

We apply this principle to determine if a Wahl singularity appears in a Q-Gorenstein degeneration of a del Pezzo surface.

Definition 1.3 A Wahl chain $[e_1, \ldots, e_r]$ is called *del Pezzo of type (I) or (II)* if it satisfies one of the following:

- (I) $[e_1, \ldots, e_{r-1}]$ or $[e_2, \ldots, e_r]$ admits a zero continued fraction of weight $\lambda \leq 8$.
- (II) There is $i \in \{2, \ldots, r-1\}$ such that $[e_1, \ldots, e_{i-1}]$ and $[e_{i+1}, \ldots, e_r]$ admit zero continued fractions of weights λ_1 and λ_2 such that $\lambda_1 + \lambda_2 \leq 8$.

Its degree is either $\ell = 9 - \lambda$ for (I), or $\ell = 9 - \lambda_1 - \lambda_2$ for (II). Its marking is the data of the zero continued fraction(s) involved in its type. If $[k_1, \ldots, k_{i-1}]$ and $[k_{i+1}, \ldots, k_r]$ are the corresponding zero continued fractions, then its marking is

$$[k_1,\ldots,k_{i-1},e_i,k_{i+1},\ldots,k_r].$$

We call e_i the central mark.

Marked Del Pezzo surfaces

Given a del Pezzo Wahl chain $[e_1,\ldots,e_r]$ of degree ℓ and marking

$$[k_1,\ldots,k_{i-1},e_i,k_{i+1},\ldots,k_r],$$

we construct its associated surface W_{*m} as follows:

- Consider the Hirzebruch surface \mathbb{F}_{e_i} .
- For type (II), choose two fibers of the \mathbb{P}^1 -fibration $\mathbb{F}_{e_i} \to \mathbb{P}^1$ and perform blow-ups along these fibers to construct the chains for $[k_1, \ldots, k_{i-1}]$ and $[k_{i+1}, \ldots, k_r]$. For type (I) consider one fiber and perform the analogue blow-ups.
- Perform extra $\lambda_1 + 1$ and $\lambda_2 + 1$ (or just $\lambda + 1$) blow-ups at general points of the corresponding marked components. Then the Wahl chain is constructed.
- By contracting the Wahl chain, we obtain W_{*m} .

Figure 1. Minimal resolutions of W_{*m} for types (I) and (II).

Theorem 2.1: Let W_{*m} be a marked surface that is not of type (I) and degree 1. Then $-K_{W_{*m}}$ is an ample divisor. Moreover, there are no local-to-global obstructions to deform W_{*m} . Thus, there exists a \mathbb{Q} -Gorenstein smoothing $W_t \leadsto W_{*m}$ where W_t is a del Pezzo surface of degree ℓ .

Classification of W_* with $-K_{W_*}$ big and $K_{W^*}^2 \geq 1$

Let W_* be a normal projective surface with a unique Wahl singularity, $-K_{W_*}$ and $K_{W^*}^2 \ge 1$. Let $\phi: X \to W_*$ denote its minimal resolution and let $\pi: X \to \mathbb{F}_{d_{max}}$ a composition of blow-downs. We control the structure of $\pi(Exc(\phi))$ and show that W_* can be deformed into some \widetilde{W}_* such that the corresponding configuration $\pi(Exc(\phi))$ consists of σ_∞ and at most two fibers f_0, f_1 .

Furthermore, let $\widetilde{X} \to \widetilde{W}_*$ denote the minimal resolution. Then, there exists a family $(\widetilde{X} \subset \widetilde{\mathcal{X}}) \to (0 \in \mathbb{D})$, for which we perform a $K_{\widetilde{X}}$ -MMP. It ends on a smooth deformation that further blowdowns to the deformation presented in the subsequent theorem.

Theorem 3.1 Let W_* be a normal projective surface with one Wahl singularity, $K_{W_*}^2 \ge 1$, and $-K_{W_*}$ big. Then, there exists a \mathbb{Q} -Gorenstein deformation $Bl_{p_1, \dots, p_u}(W_{*m}) \leadsto W_*$ for some smooth points p_1, \dots, p_u , except for a single exceptional case.

This gives rise to the following consequences:

Corollary 3.2: There exists a Q-Gorenstein smoothing $W_t \leadsto W$ such that $-K_{W_*}$ is ample, $K_{W_*}^2 = \ell$, and $\frac{1}{n^2}(1, na-1) \in W_*$ if and only if the Wahl chain of $\frac{n^2}{na-1}$ is a del Pezzo chain of degree $\geq \ell$. Moreover,

- Every Wahl singularity appears in a Q-Gorenstein smoothing $W_t \leadsto W_*$, where W_t is a del Pezzo surface of degree $\ell \leq 4$.
- There exist infinitely many Wahl singularities that do not appear in a \mathbb{Q} -Gorenstein smoothing $W_t \leadsto W$, where W_t is a del Pezzo surface of degree $\ell \geq 5$.

Additionally, the surfaces W_{*m} fit in the picture of the toric degenerations of del Pezzo surfaces. Any pair of toric del Pezzo surfaces with T-singularities and fixed degree ℓ are connected by a tree of smooth rational curves [3, Theorem 1]. Through a special type of deformation which we refer as *slides* (see [7, Section 4]), we prove the following statement:

Theorem 3.3: There exists a canonically defined del Pezzo toric surface W_{*m}^T , such that W_{*m}^T contains at most T-singularities and W_{*m} admits a \mathbb{Q} -Gorenstein degeneration to W_{*m}^T .

Applications to vector bundles on del Pezzo surfaces

Definition 4.1: An exceptional vector bundle E (e.v.b) on a projective surface Y is a locally free sheaf such that $Hom(E,E)=\mathbb{C}$, and $Ext^1(E,E)=Ext^2(E,E)=0$. An exceptional collection of vector bundles (e.c) on a projective surface Y is a collection of exceptional vector bundles $E_r, E_{r-1}, \ldots, E_0$ such that $Ext^k(E_i, E_j)=0$ for all i < j and all $k \geq 0$.

Hacking in [1, Theorem 1.1], provides a technique to construct exceptional vector bundles on \mathbb{Q} -Gorenstein smoothings of surfaces with a unique Wahl singularity and $p_g = q = 0$. This was further generalized for multiple singularities by Tevelev-Urzúa in [5].

Theorem 4.2 ([5] Thm 5.5 and 5.8) Let $W_t \rightsquigarrow W$ be a \mathbb{Q} -Gorenstein smoothing of a normal projective surface with at most Wahl singularities such that:

- (1) $p_q(W) = q(W) = 0$,
- (2) The surface W has exactly the Wahl singularities p_0, \ldots, p_r (we also allow P_i to be smooth points), and a chain of nonsingular rational curves $\Gamma_1, \ldots, \Gamma_r$ that are toric boundary divisors Γ_i , Γ_{i+1} at p_{i+1} , and
- (3) There exists a Weil divisor $A \subset W$, which is Cartier outside of p_0 and generates the local class group $(p_0 \in W)$.

Then, after possibly shrinking \mathbb{D} , there exists an (e.c) E_r, \ldots, E_0 on W_t with $t \neq 0$, such that $rk(E_i) = n_i$ and $c_1(E_i) = -n_i(A + \Gamma_1 + \ldots + \Gamma_i) \in H^2(W_t, \mathbb{Z})$, where $p_i = \frac{1}{n^2}(1, n_i a_i - 1)$.

By combining the previous theorem and Corollary 3.2, we reprove the following result of Polishchuck-Rains [4, Theorem A].

Theorem 4.2 Let ∂ , n be coprime integers with n > 0. Then there is an e.c. E, \mathcal{O}_Y on a del Pezzo surface Y of degree 4 with rk(E) = n and $deg(E) = \partial$.

Furthermore, we obtain:

Theorem 4.3: There exist infinitely many pairs ∂ , n of coprime integers with $0 < \partial < n$ such that an e.v.b. E with rk(E) = n and $deg(E) \equiv \pm \partial \pmod{n}$ is not realizable on any del Pezzo surface of degree ≥ 5 .

References

- [1] Paul Hacking.
 - Exceptional bundles associated to degenerations of surfaces. *Duke Math. J.*, 162(6):1171–1202, 2013.
- [2] Paul Hacking and Yuri Prokhorov.
- Smoothable del pezzo surfaces with quotient singularities. Compositio mathematica, 146(1):169–192, 2010.
- [3] Alexander Kasprzyk, Benjamin Nill, and Thomas Prince. Minimality and mutation-equivalence of polygons. *Forum Math. Sigma*, 5:Paper No. e18, 48, 2017.
- [4] Alexander Polishchuk and Eric Rains.

 Exceptional pairs on del pezzo surfaces and spaces of compatible feigin-odesskii brackets.

 arXiv preprint arXiv:2407.19307, 2024.
- [5] Jenia Tevelev and Giancarlo Urzúa.

 Categorical aspects of the Kollár–Shepherd-Barron correspondence.

 arXiv:2204.13225.
- [6] Giancarlo Urzúa and Juan Pablo Zúñiga. The birational geometry of Markov numbers. *Mosc. Math. J.*, 25(2):197–248, 2025.
- [7] Giancarlo Urzúa and Juan Pablo Zúñiga.
 Wahl singularities in degenerations of del pezzo surfaces.
 arXiv preprint arXiv:2504.19929, 2025.